34 research outputs found

    Transmission measurement at 10.6 microns of Te2As3Se5 rib-waveguides on As2S3 substrate

    Full text link
    The feasibility of chalcogenide rib waveguides working at lambda = 10.6 microns has been demonstrated. The waveguides comprised a several microns thick Te2As3Se5 film deposited by thermal evaporation on a polished As2S3 glass substrate and further etched by physical etching in Ar or CF4/O2 atmosphere. Output images at 10.6 microns and some propagation losses roughly estimated at 10dB/cm proved that the obtained structures behaved as channel waveguides with a good lateral confinement of the light. The work opens the doors to the realisation of components able to work in the mid and thermal infrared up to 20 microns and even more.Comment: The following article appeared in Vigreux-Bercovici et al., Appl. Phys. Lett. 90, 011110 (2007) and may be found at http://link.aip.org/link/?apl/90/01111

    Technology challenges for space interferometry: the option of mid-infrared integrated optics

    Full text link
    Nulling interferometry is a technique providing high angular resolution which is the core of the space missions Darwin and the Terrestrail Planet Finder. The first objective is to reach a deep degree of starlight cancelation in the range 6 -- 20 microns, in order to observe and to characterize the signal from an Earth-like planet. Among the numerous technological challenges involved in these missions, the question of the beam combination and wavefront filtering has an important place. A single-mode integrated optics (IO) beam combiner could support both the functions of filtering and the interferometric combination, simplifying the instrumental design. Such a perspective has been explored in this work within the project Integrated Optics for Darwin (IODA), which aims at developing a first IO combiner in the mid-infrared. The solutions reviewed here to manufacture the combiner are based on infrared dielectric materials on one side, and on metallic conductive waveguides on the other side. With this work, additional inputs are offered to pursue the investigation on mid-infrared photonics devices.Comment: Accepted in Adv. in Space Researc

    French responses to the Prague Spring: connections, (mis)perception and appropriation

    Get PDF
    Looking at the vast literature on the events of 1968 in various European countries, it is striking that the histories of '1968' of the Western and Eastern halves of the continent are largely still written separately.1 Nevertheless, despite the very different political and socio-economic contexts, the protest movements on both sides of the Iron Curtain shared a number of characteristics. The 1968 events in Czechoslovakia and Western Europe were, reduced to the basics, investigations into the possibility of marrying social justice with liberty, and thus reflected a tension within European Marxism. This essay provides an analysis specifically of the responses by the French left—the Communist Party, the student movements and the gauchistes—to the Prague Spring, characterised by misunderstandings and strategic appropriation. The Prague Spring was seen by both the reformist and the radical left in France as a moderate movement. This limited interpretation of the Prague Spring as a liberal democratic project continues to inform our memory of it

    Intradialytic Nutrition and Hemodialysis Prescriptions: A Personalized Stepwise Approach

    Get PDF
    Dialysis and nutrition are two sides of the same coin—dialysis depurates metabolic waste that is typically produced by food intake. Hence, dietetic restrictions are commonly imposed in order to limit potassium and phosphate and avoid fluid overload. Conversely, malnutrition is a major challenge and, albeit to differing degrees, all nutritional markers are associated with survival. Dialysis-related malnutrition has a multifactorial origin related to uremic syndrome and comorbidities but also to dialysis treatment. Both an insufficient dialysis dose and excessive removal are contributing factors. It is thus not surprising that dialysis alone, without proper nutritional management, often fails to be effective in combatting malnutrition. While composite indexes can be used to identify patients with poor prognosis, none is fully satisfactory, and the definitions of malnutrition and protein energy wasting are still controversial. Furthermore, most nutritional markers and interventions were assessed in hemodialysis patients, while hemodiafiltration and peritoneal dialysis have been less extensively studied. The significant loss of albumin in these two dialysis modalities makes it extremely difficult to interpret common markers and scores. Despite these problems, hemodialysis sessions represent a valuable opportunity to monitor nutritional status and prescribe nutritional interventions, and several approaches have been tried. In this concept paper, we review the current evidence on intradialytic nutrition and propose an algorithm for adapting nutritional interventions to individual patients

    In-doped gallium oxide micro- and nanostructures: morphology, structure, and luminescence properties

    Get PDF
    The influence of indium doping on morphology, structural, and luminescence properties of gallium oxide micro- and nanostructures is reported. Indium-doped gallium oxide micro- and nanostructures have been grown by thermal oxidation of metallic gallium in the presence of indium oxide. The dominant morphologies are beltlike structures, which in many cases are twisted leading to springlike structures, showing that In diffusion in Ga2O3 influences the microstructure shapes. High-resolution transmission electron microscopy has revealed the presence of twins in the belts, and energy-dispersive X-ray spectroscopy in the scanning electron microscopy (SEM) has detected a segregation of indium impurities at the edges of planar structures. These results suggest that indium plays a major role in the observed morphologies and support the assumption of a layer by layer model as growth mechanism. An additional assessment of indium influence on the defect structure has been performed by cathodoluminescence in the SEM, X-ray photoelectron microscopy, and spatially resolved Raman spectroscopy
    corecore